skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Youngs, Nora"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove algebraic and combinatorial characterizations of the class of inductively pierced codes, resolving a conjecture of Gross, Obatake, and Youngs. Starting from an algebraic invariant of a code called its canonical form, we explain how to compute a piercing order in polynomial time, if one exists. Given a piercing order of a code, we explain how to construct a realization of the code using a well-formed collection of open balls, and classify the minimal dimension in which such a realization exists. 
    more » « less